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Generative Models

Why are we interested in Generative Models?

Till now we’ve been modelling P (Y |X). Generative Models have the general form P (X,Y )

If we are able to build a generative model then we can build a classifier out of that generative model really
easily as so:

P (Y |X) = P (X,Y )
P (X)

Here, P (X) can be substituted with
∑

y(P (X,Y )). Finally giving us:

P (Y |X) = P (X,Y )∑
y P (X,Y )

The ideal goal is to be able to model P (X1, X2, X3, ..., Xd, Y )

P (X1, X2, X3, ..., Xd, Y ) = P (X1, X2, X3, ..., Xd|Y )P (Y )

If X1, X2, ...Xd are conditionally independent given Y , then the above equation simplifies to:

P (X1, X2, X3, ..., Xd, Y ) = P (X1|Y )P (X2|Y )P (X3|Y )...P (Xd|Y )P (Y )

Or,

P (X1, X2, X3, ..., Xd, Y ) = P (Y )
d∏

i=1
P (Xi|Y )

The assumption of the variables being class conditionally independent is called the Naive Bayes Assumption.
Since our end goal was to build a classifier from this generative model, we can use the generative model as
so:

P (Y = 0|X1, X2...Xd) ∝ P (Y = 0, X1, X2...Xd)
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Figure 1: A Naive Bayes Classifier
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P (Y = 1|X1, X2...Xd) ∝ P (Y = 1, X1, X2...Xd)

We know that the constant term in both these equations is going to be the same (i.e., the denominator term
from the Bayes equation) So if we assume the constant term to be α to get rid of the proportionality and
add the equations, we get:

α = 1
P (Y = 0, X1, X2...Xd) + P (Y = 1, X1, X2...Xd)

Hence the naive bayes classifier equation becomes:

P (Y = 0|X1, X2...Xd) = P (Y = 0, X1, X2...Xd)
P (Y = 0, X1, X2...Xd) + P (Y = 1, X1, X2...Xd)

P (Y = 1|X1, X2...Xd) = P (Y = 1, X1, X2...Xd)
P (Y = 0, X1, X2...Xd) + P (Y = 1, X1, X2...Xd)

Both the probabilities in the denominator are joint pdfs and can be obtained from the generative model.

Structure and Params

The Structure of the Naive Bayes Classifier is a DAG (short for Directed Acyclic Graph) and the parameters
would be the conditional probabilities. The parameters could be esimated using MLE or using just the
priors. But where are the priors in a Naive Bayes Classifier? The priors are encoded by the relationships
between the variables and the variable which is assumed to be given (e.g. Y ). So for each such relationship
(e.g. X1|Y ), there can be two priors - one encoding the prior in the case Y = 0 and the other encoding the
prior in the case Y = 1. Hence, if we are modelling P(Y|X_1, X_2, . . . , X_d) then there are 2 × d priors
for the conditionally independent variables and a prior for Y itself giving us a total of 2 × d+ 1 priors.

Bayesian Network

Bayesian Networks are a type of model where the structure is a DAG such that the random variables encoded
in it satisfy the Markov Condition.

For a network like the above, we will require a total of 10 priors (1 + 1 + 4 + 2 + 2)

Node Parents Non-Descendents

B φ φ

E φ φ

A B, E φ

J A B, E, M
M A B, E, J

Note that we dont include parents in its non-descendents.
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Figure 2: An example Bayesian Network

Markov Condition

The Markov Condition states that a random variable X is a conditionally independent of its non-descendents
given Parents.

• X is a parent of Y if there is an edge X → Y .
• Y is a descendent of X if there is an edge X → Y .
• Y is a non-descendent of X if there is no path from X to Y and X, Y do not have a parent-child

relationship.

If we know the Markov Condition holds, we should be able to answer any conditional query fairly easily
using the joint distribution over all the variables

P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A)

Selecting a Graph

What was before BIC?

BIC

Markov Equivalance Networks

Two sets of DAGs that encode the same set of conditional independences are called markov equivalence
networks.

Network A Network B Network C

An example of three markov equivalence networks.

Neural Network based Generative Models

Autoencoder

An autoencoder (AE) is a neural network that learns to copy its input to its output. The internal repre-
sentation between the encoder and the decoder is commonly called as the code or the latent vector of that
input sample.
AE reconstructs the input approximately to preserve the most relevant parts of the data i.e., some important
latent aspects.
Let x be an input example. The encoder maps Enc : X → H and the decoder maps Dec : H → X . The
encoder and decoder functions are obtained by minimising a reconstruction loss:

Enc,Dec = argminEnc,Dec‖ x − (Dec · Enc)(x)‖2

In the simplest case, both encoder and decoder are single layered. That is,
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Figure 3: A typical autoencoder
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h = σ(wx + b)

Usually there is a regularization term added to the loss so that the encoder and decoder do not collapse into
an identity function. h is referred to as the code or the latent variable or the latent representation.

Figure 4: The end to end pipeline of an autoencoder

The idea is that each hidden dimension represents some latent feature learned about the input. For example,
for an autoencoder made to reconstruct human faces, it might learn features such as smile, skin tone, gender,
beard, etc. Ofcourse, this is just to give an example. In actuality it may end up learning latent features that
may not necessarily be even understandable to us.

An autoencoder is a discriminative model. It can be used for: * compressing data * greedy layer wise
pre-training * cannot be used for generating new data.

The greedy way of pre-training is basically that we first train an autoencoder with encoder and decoder of
only size 1. Then we keep adding layers and only train the new layers. This was very important back in the
day when there was not a lot of compute at hand.

For generating new data, the model needs to learn a join distribution p(x) or p(x, h) Or, a model
can be considered to be generative when the latent variable has a probability distribution associated with it
- a kind of autoencoder that is called as a Variational Autoencoder.

In such a case, the encoder network is usually called as the recognition model and the decoder network is
called as the generative model.

For the complete dataset, the VAE would output a range of values for each latent dimension hence creating
a statistical distribution in each of those dimensions. Ideally, a very minute difference between the sampled
points should result in the same output being created from the generative model.

Variational Inference

Limitations

Generative Adversarial Networks (GAN)
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Figure 5: A basic Variational Autoencoder setup

Generative Model Discriminative Model

Estimates the joint probability p(x, y). Estimates the conditional probability p(y|x) of the label
y, given data instance x (e.g. MLP, CNN).

It can be used in a supervised and an
unsupervised setting

It can be only used in a supervised setting

The goal of the generative model is to
synthesize data instances that are so realistic
that it is hard for an observer to say it is
synthetic i.e., D(x′) ≈ 1

The goal of the Discriminative Model is to classify
correctly real examples from training data from
synthetic samples created using the generative model.

maxG(−(1− y)log(1−D(G(z)))) where
z ∼ N (0, 1)

minD(−ylog(D(x))− (1− y)log(1−D(x)))

The term adversarial is used as the goals of the discriminator and generator is to fool each other.

Figure 6: Generative Adversarial Networks
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Training

The final objective is

minD maxG{−Ex∼X (logD(x))−Ez∼N (0,1)(log(1−D(G(z))))}

The solution is actually a saddle point here due to the combined minimization and maximization here. In
game theoretic terms, it is a nash equlibrium.
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