
Clustering

Sharad Chitlangia

05-10-2021

Clustering

Our visual system performs clustering in an unsupervised manner all the time. For instance, when you’re
looking at a laptop, you’re not thinking of its individual parts but rather the individual components such as
the keyboard, screen together as a laptop.

Lets consider data instances X1, X2, ..., Xn. How many non overlapping clusters can be formed from this?

The answer which is the Bell’s Number comes from combinatorial math from a similar question - How many
partitions exist of a set?

The only difference between these two is that in clustering we wouldnt care if the data instances are so close
that they are considered identical – which is something that we want to learn. At the heart of clustering is
a notion of similarity or distance between objects, as we want to group similar instances together.

Minkowski Distance

Dp(x, y) = (
d∑

i=1
‖xi − yi‖p)

1
p

Minkowski distance is the euclidean distance for p = 2 and the manhattan distance for p = 1. As p becomes
larger, max(|xi − yi|) becomes dominant.

Nearest neighbour Classifier

Suppose you’ve seen some data instances and now we want to find the y value of a new instance x′. In the
nearest neighbour classifier, we find the nearest neighbour and assign y of the new instance x′ to be the y of
the nearest neighbour.

An alternative to this is using the average of k nearest neighbours.

A problem with such a classifier (other than storage) is that it is dependent on the order in which the data
instances are seen. The main difference between clustering and classification is that we dont know y in
clustering.

Probabilistic Clustering

Naive Bayes Clustering

For each data instance, we associate a fractional weight i.e., a probability with each class.
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Instance X1 X2 X3 X4 Y Count

1a 0 1 1 1 1 0.4
1b 0 1 1 1 2 0.1
1c 0 1 1 1 3 0.5

With probabilitic clustering, we are simply done. We interpret this as a 40% chance instance 1 belongs to
cluster 1 and so on. This is also called as Soft Clustering.

The initial counts is a problem, but we would usually update the initial counts based on the data we’ve seen.
The algorithm we to update the counts is known as the Expectation Maximization Algorithm.

Gaussian Mixture Model

In GMM based clustering, we will be dealing with data that is coming from a mixture of probability distri-
butions. An example of such data is shown below
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Let us assume the first distribution is A and the second is B. Given a point, we can determine the probability
that it came from either A or B. In some sense, every point belongs to every cluster with a probability. In
practise, we will be given several points and we will have to construct these distributions.

In this case, if we know µa, σa and µb, σb, then calculating P (X = x|A) and P (X = x|B) is straightforward.

P (A|X = x) ∝ P (X = x|A)P (A)

Let us assume we know the prior P (A). The clustering problem here is that we don’t know µ, σ for each of
these distributions. If µ, σ are known, then we are done.

Here there are 4 unknowns: µa, σa and µb, σb. Not in saying this we are assuming that there are only 2
distributions. And that they are normal.

Procedure

1. Randomly guess µa, σa, µb, σb, P (A). Note: P (B) = 1− P (A).
2. Using these guesses calculate the probability that each of these points belong to A and the probability

that each of these belong to B.
3. Similarly we do this for every point and finally we can calculate the mean µa =

∑
i=0

dwi,Axi

N . We can
calculate the other required parameters similarly.

4. With these parameters, we can calculate the likelihood of the given data using the gaussian pmf
function. The likelihood would simply be the product of the probabilities of the individual data points
being produced given the the parameters of the gaussian calculated in Step 3.

A possible stopping criterion is to stop when the likelihood stops increasing/changing. But this does not
guarantee convergence to optimal clustering.

If we generalize this to higher dimensions, we can instantly see that this would require estimation of a lot
of parameters especially terms in the covariance matrix. Hence, much more data is required. As mixture
models dont scale with high dimensions, we usually need some approximation to mixture models that scales
well with higher dimensions.

k-means clustering

Here, each point belongs to a single cluster and membership is determined based on distance rather than a
probability.

Clusters are described entirely by the mean.

Procedure

1. Randomly assign k means. Say µ1, µ1, ...µk.
2. For each iteration:

a. for every point x
i. Compute distance to means.
ii. Assign to closest mean

b. Recompute mean based on cluster assignments.
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Similar to the EM Algorithm, this procedure does not alone guarantee convergence. If we think about this
as an optimization algorithm, we need to minimize the sum of squares of each point to its closest mean i.e.,

L =
N∑

i=1

k∑
j=1

zij |xi − µj |2

where zij = 1 if xi belongs to cluster µj and 0 otherwise.

So if the means of the cluster do not change after an iteration, it can be stopped as it may not be able to do
any better. This is because the loss function of each cluster is at the minimum and the overall loss function
is also minimum.

The limiting case is when k = n and each cluster is itself. This is not useful, but the loss is 0.

Usually such a situation can be prevented by having a regularization term that penalizes when new clusters
are created.

Assumptions (and Drawbacks)

• k-means works best and is useful when the data is spherically distributed around the mean (But this
can be resolved by data pre-processing).

• larger clusters tend to dominate and pull in scattered points further increasing their size. Hence,
k-means is suitable for evenly sized clusters.

Hierarchical Clustering

We can do this in a top down manner i.e., we start with all instances in a single cluster or in a bottom-up
manner where we start with each instance as a single cluster.

Top-Down Clustering

Bottom-Up Clustering (Agglomerative)
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