Questions from the tutorial on Coins and Dice
For a given \(F: \mathbb{R}\rightarrow \lbrack 0,1 \rbrack\) is a random variable with a p.d.f \(p(F)\), show that \(P(heads) = \mathop{\mathbb{E}}\lbrack F \rbrack\)
\[P(heads) = \int_0^1 P(heads|F=f)p(F=f)df\] \[P(heads) = \int_0^1 fp(f)df\] \[P(heads) = \mathop{\mathbb{E}} \lbrack F \rbrack\]
\[\Gamma{(x+1)} = \int_0^{\infty} t^x e^{-t} dt\] \[\Gamma{(x+1)} = x\Gamma{(x)}\]
\[B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt\] \[B(x,y) = \frac{\Gamma{(x)}\Gamma{(y)}}{\Gamma{(x+y)}}\]
Beta p.d.f.
\[beta(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}\]
For a random variable \(F \sim beta(f;\alpha,\beta)\),
\[\mathop{\mathbb{E}}\lbrack F \rbrack = \frac{\alpha}{\alpha+\beta}\]
Given a binomial random sample \(D\) of size \(M\) given a random variable \(F\) with p.d.f. \(p(F)\) over relative frequencies of heads and a dataset \(d = \{x^{(1)},x^{(2)}...,x^{(M)}\}\) in which there are \(s\) values of heads and \(t\) values of tails
\[P(d) = \mathop{\mathbb{E}}(F^s \lbrack 1-F \rbrack^{t})\]
If \(F \sim p(f) = beta(f;\alpha,\beta)\), then
\[P(d) = \frac{B(\alpha+s,\beta+t)}{B(\alpha,\beta)}\]
The posterior \(P(f|d)\) can also be computed now.
\[P(f|d) = \frac{P(d|f)P(f)}{P(d)}\] \[P(f|d) = \frac{f^s(1-f)^t p(f)}{\mathop{\mathbb{E}}(F^s \lbrack 1-F \rbrack^{t} )}\] \[P(f|d) = beta(f;\alpha+s,\beta+t)\]
\[P(X^{(M+1)} = 1|d) = \frac{\alpha+s}{\alpha+s+\beta+t}\]
Therefore,
\[Prior = B(\alpha,\beta)\] \[Likelihood = \frac{B(\alpha+s,\beta+t)}{B(\alpha,\beta)}\] \[Posterior = B(\alpha+s,\beta+t)\]
We will treat each leaf in a CPT as a coin with its own prior. These coins are independent of coints at other leaves.
Parameter estimation is also straightforward now, if we have the prior and the data. We can directly apply the beta update rule.
For the search procedure, how can we calculate \(P(d)\). Recall that calculating this term helps in guiding the search procedure. At each node, we select the successor which increases the value of this term the most (in both trees and bayesian networks).
For attribution, please cite this work as
Chitlangia (2021, May 12). Resources: Coins and Dice Tutorial. Retrieved from https://resources.sharadchitlang.ai/posts/2021-05-10-tutorial-coins-dice/
BibTeX citation
@misc{chitlangia2021coins, author = {Chitlangia, Sharad}, title = {Resources: Coins and Dice Tutorial}, url = {https://resources.sharadchitlang.ai/posts/2021-05-10-tutorial-coins-dice/}, year = {2021} }