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Evaluation

When we evaluate models, we will need a loss function and our goal is to minimize the expected loss value.

The reason for it to be expected loss is because our loss is always going to be computed over a sample of
data points. So in the probabilitic sense, the loss is associated with an actual distribution.

Suppose we’re given (x1, y1), ...., (xn, yn) and a new point (xi, ?). We want to find the value of ŷ that
minimizes L(y, ŷ) for the point

Problem: We do not know y, so we cannot really figure out if something is minimizing L(y, ŷ).

Suppose we’re given data D : (x1, y1), ...., (xn, yn) which is drawn from a distribution Dx,y. We want to
predict ŷ so as to minimize L(y, ŷ) for any (x, y) drawn from the distribution Dx,y.

Problem: It is similar to the previous problem but worse. Here we don’t know the values of (x, y), so how
de minimize the loss?

Solution: In both the only solution is to treat X and Y as random variables and minimize expected loss.

Case 1: Given x i.e., X=x

E[L(y, ŷ)] =
∑

y

L(y, ŷ)P (Y = y|X = x)

This is called as conditional risk. If we assume that we have 0− 1 loss function:

E[L(y, ŷ)] =
∑
y 6=ŷ

P (Y = y|X = x)

which further reduces to:

E[L(y, ŷ)] = 1− P (Y = ŷ|X = x)

So minimizing the expected loss is similar to maximizing P (Y = ŷ|X = x). Note that this is the right
decision to take because we are using a 0− 1 loss function.

Assume a squared loss function: L(y, ŷ) = (y − ŷ)2

E[L(y, ŷ)] =
∫

(y − ŷ)2f(y|x)dy

To minimize this predict ŷ = E[y|x]. Proven by setting ∂ E[L(y,ŷ)
∂ŷ = 0
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Case 2: Both x and y are unknown

E[L(y, ŷ)] =
∑
x,y

L(y, ŷ)P (X = x, Y = y)

We can make this a bit more explicit by specifying the prediction ŷ to be a function of x.

E[L(y, ŷ)] =
∑
x,y

L(y, f(X = x))P (X = x, Y = y)

Note that f(x) here is conditional on the given dataset d which can be thought of as an instance of the
random variable D.

E[L(y, ŷ)|D = d] is called the generalization error.

We can estimate the generalisation error using a train-test split. But the problem then becomes that we are
not really estimation the generalisation error on d then. It is rather a subset of d. There are three possible
solutions to this: 1. Request more data so that we can train on d and test on the extra data. 2. Generate
more data ourselves using a generative model e.g. P (X,Y ). 3. We just provide the training estimates i.e.,
we train and test on the same set.

Solution: To avoid the problems associated with calculating the generalisation error given a dataset d, we
can treat d as an instance of a random variable D and calculate the expected generalisation error (em) rather
than the generalisation error:

EGE(eM ) = E(eM,d) =
∑
x,y

L(y, fM,d(x))P (x, y|D = d)P (D = d)

The advantage here is that the error is not calculated for one instance of the dataset but rather considering
all possible datasets at once.

So now we can repeatedly do train-test splits to estimate eM without facing any of the earlier problems.
Here, the dataset we have D = d acts as a proxy for the population. By this we mean that we assure that
sampling from d is equivalent to sampling from D.

Now in the case that we had estimated eM,d using the entire training dataset, then our estimate for eM,d

will be optimistic, i.e., given new data d′:

eM,d′ = eM,d + ε

where ε is the training error or optimism.

Evaluating two models for the same problem

We cannot simply compare accuracies of two different models, as the results might be sampling dependent.
We need to find a way to check if two models are doing the same thing and whether the differences in
performances of the two models is meaningful.

. Correct Incorrect

Correct n1 n2

Incorrect n3 n4

2



If both the models are doing the same thing, then the points at which they differ is just some random noise.

Expected Count of A = 0, B = 1 = n2 + n3

2

Expected Count of B = 0, A = 1 = n2 + n3
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We can use χ2 test to check for the independence of the two variables above. If we find that the two models
are not doing the same thing, try and identify where one of the models does better so we can use that
information to improve.

Evaluating two models on many problems

Dataset M1 M2

1 A11 A21

2 A12 A22

. . .

. . .
n A1n A2n

Suppose we label the datasets in which M1 is better as heads and datasets in which M2 is better as tails.

If M1 and M2 are doing the same thing, then the probability of heads and tails should roughly be equal. We
can now make a probabilitic estimate whether M1 and M2 are doing the same thing.

This, ofcourse, is not taking into account the magnitude of difference in performance for each dataset. A
solution is to use the Wilcoxon signed rank test.

Evaluating many models on many problems

ROC Curve True Positive Rate (TPR):

TPR = TP

TP + FN

TPR = 1 − FNR

False Positive Rate (FPR)

FPR = FP

FP + TN
= 1− TNR

Each model will have a point on the ROC Curve for a given dataset.

So far we have mostly assumed that a false positive and a false negative are equally penalized. In reality,
this might not be the case.

Loss = P (+)P (−|+)C(−|+) + P (−)P (+|−)C(+|−)
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Loss = P (+)C(−|+)(1− TPR) + P (−)C(+|−)FPR

This loss is a linear function of FPR and TPR which define the space of the ROC curve.
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